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ABSTRACT 
 
Steel castings have the potential to provide new opportunities for reducing cost, improving performance, and 
facilitating unique building design for steel construction.  Steel castings are currently used for high performance and 
critical applications in the railroad, construction, mining, and pump/valve industries.  Recent research has shown 
how steel castings can be used in seismic applications for building construction and perform well beyond testing 
requirements.  Steel castings provide open geometry, manufacturing flexibility, equivalent mechanical properties to 
wrought material, and good weldability.  Steel Founders’ Society of America (SFSA) and American Institute of 
Steel Construction (AISC) have formed a committee to develop the applications of steel castings in building 
construction.
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BACKGROUND 
 
Steel castings are not commonly used in building construction.  In the past, castings have been used in the building 
industry and for bridges. There are occasional uses but the ordinary application of steel castings to create steel 
structures that are pervasive in industrial equipment are absent from building construction.  Steel castings are used in 
safety critical applications and in harsh demanding environment to carry significant loads.  They are commonly 
welded into a fabricated structure.  Castings give users unlimited potential for steel geometry.  In industrial 
equipment, steel castings are used as connectors to perform demanding tasks while holding the other structural 
elements together.  The use of steel castings as connectors in building construction can be an attractive option to 
improve the performance of the connection while lowering the total cost of the structure. 
 
Connections are a critical feature of building construction.  While the connectors are rarely more than 5% of the 
total weight, they are typically 60% of the cost.  Moment and special bracing connections are especially difficult and 
costly.  The cost for steel construction in 2001 was 25% material, 33% shop, 28% erector, and 14% other.  Labor 
related costs exceed 60% of the cost of construction (Geschwindner, 2002).  Modular cast connectors could reduce 
labor and erection costs, improve performance, decrease erection time, easily transfer loads from one shape beam or 
column to another, enhance reliability of the connection, and reduce engineering and detailing costs.  In seismic 
applications, they could improve the safety and reliability of the structure cost-effectively.  For special architectural 
features, they could provide innovative and attractive transitions between shapes or unique designs. 
 
Good connections must: 
1. support the loads 
2. satisfy the code and specification requirements 
3. perform safely and economically 
4. be simple and repetitive 
5. fabricate and erect with ease 
6. minimize the labor required 
 
The most common problems with connections include: 
1. fit up and access at the site 
2. failure to clearly satisfy the code requirements 
3. incorrect interpretation of drawings 
4. lack of needed information on the drawing, e.g. loads 
5. poor match between member sizes 
6. high cost of fabrication and erection 
(Merrell, 2002) 
 
Castings are capable of meeting the requirements of good connectors.  The most common application of steel 
castings is couplers for the railroad industry, Figure 1.  As an example of the severe requirement, the electric utilities 
use large dedicated trains to move coal from the Powder River Basin to the Midwest.  These trains are commonly 
made up of 120 freight cars that each weigh 286,000 pounds, for a total train weight of over 13,000 tons.  This train 
is powered by two sets of 12,000 horsepower locomotives for a total of 24,000 horsepower.  These trains cross the 
Rocky Mountains in the dead of winter at temperatures well below freezing on tracks that are remote and may have 
rocks or other debris on the track.  This whole system of 13,000 tons and 24,000 horsepower is connected in the 
center by one set of steel castings in the form of a coupler.  The example of a railroad coupler illustrates that steel 
castings can clearly meet the requirements listed for a good connection.  They are capable of safe, economical, 
reliable, simple, repetitive performance. 
 
If connections are a problem, and steel castings offer an answer, why are castings not being used?  The American 
Institute of Steel Construction (AISC) and the Steel Founders' Society of America (SFSA) have formed a joint task 
committee to explore the possibilities of using steel castings in steel building construction.  Most of the problems in 
using steel castings in building applications seem to be related to a lack of understanding.  Steel foundries do not 
understand the requirements or needs of the building construction industry.  Designers, fabricators and erectors do 
not understand the use of castings. A brief overview of steel casting use, method of manufacturing, properties, and 
purchase requirements may be useful. 
 

Figure 1: Standard railcar coupler
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APPLICATIONS 

 
Steel castings are used broadly in industrial equipment as 
connectors.  The example of a railroad coupler already 
discussed is a good example.  The railroad industry uses steel 
castings extensively for the trucks, wheels, and corners. Fifth 
wheels for large over the road trucks are steel cast connectors.  
Caterpillar aggressively used steel castings in its 797 mine 
haul truck, Figure 2.  The truck can carry 360 tons and has a 
diesel engine that provides 3400 hp (Caterpillar, 2003).  
Caterpillar used steel castings to make the entire load-bearing 
frame for improved durability and resistance to impact loads.  
Whether as connectors for structural components or power 
transmission parts, steel castings are commonly used in 
industrial equipment (SFSA, 1995). 
 
One example that may be easier to relate to steel structures is 
the use of steel castings for valves and fittings.  Steel castings 
can have complex internal passages, which is a unique 
capability compared to other manufacturing processes.  This 
is why castings are used for blocks or heads in automotive 
engine applications.  In fittings for piping, castings not only 
provide a flow path, they are a structural connector of pipe, a 
hollow structural shape.  The structural design for fittings is 
seen as straight forward since the fitting is a successful 
structural component as long as it outlives the pipe.  The cast 
steel fitting cross section is maintained larger than the pipe 
cross-section and this assures that the pipe will fail first. 
 
The reason steel castings are attractive as connectors is the 
freedom of design.  Any shape that can be imagined can be 
cast.  Frequently, a casting cannot be made effectively not 
because the design was too aggressive but because it was too 
timid.  Often a fabrication design that is inadequate is sent to 
the foundry to see if it can be made as a casting.  This 
normally causes manufacturing problems.  And changing the 
manufacturing process will not overcome inherent 
performance characteristics of a design.  Cast parts are best 
manufactured when designed for the casting process.  One 
reason that castings are seen as problems is because the 
foundry is often asked to make poor designs successful and 
so the lead-time is long and the cost is high.  Good casting 
design allows weight to be reduced, cost to be lowered and 
performance to be improved. 
 
Steel castings are expensive sources of steel but cheap 
suppliers of geometry.  Good applications of steel castings are 
details that have many parts with high fabrication costs, poor 
material utilization and performance limits based on section size or geometry limits.  The flexibility of casting 
allows material to be placed where needed and material to be removed where it is not needed.  Castings like big 
sweeping curves, non-uniform sections, and complex geometry. 
 
One structural example of the use of steel castings to give shape and performance in a steel structure is their use as 
nodes in offshore oil platforms, Figure 3.  The casting is designed to perform in a demanding environment of high 
stress and corrosive atmosphere, it weighs 20% less than a fabricated connection, and moves the welds to the 

Figure 2: Caterpillar 797 truck

Figure 3: Cast node and offshore oil platform
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Hollow Structural Sections (HSS) elements outside the high load regions of the structure to prevent failure of a 
welded joint in a high stress region.  The steel cast nodes are designed so the pipes drive the loads into the casting.  
The casting geometry and section size are tailored to survive the requirements of the application (Marston, 1991).  
Similar to welding procedures that rely on the same principles of metal solidification as castings, casting procedures 
call out testing requirements to ensure mechanical performance.  First article tests typically call out x-ray and 
magnetic particle inspection to ensure the quality level of the casting.  Therefore, ensuring quality and performance 
of a casting is very similar to that of a weldment. 
 
 

PROCESS 
 
All steel is cast.  Traditional integrated mills melted ore in blast furnaces, converting blast furnace iron to steel and 
cast steel ingots.  The ingots are rolled into plate or bar and then finally rolled into the desired structural shape.  
Mini-mills melt steel scrap in electric furnaces and then continuously cast the steel into bars that are directly rolled 
into the structural shape.  Foundries melt steel scrap in electric furnaces like mini-mills but cast the steel directly to 
shape in molds. 
 
Molds are made of sand held together by a binder.  
Molds were traditionally made of sand with clay and 
water as a binder but now the use of organic polymers 
to hold the sand together.  The desired shape is first 
made as a pattern of wood, metal or plastic.  The 
pattern is made oversize to compensate for the change 
in size of the metal cooling to room temperature.  The 
pattern forms the mold cavity that holds the molten 
steel during solidification and cooling.  Most molds are 
made in two halves, the top half is called a cope and the 
bottom is called the drag.  The joint between the cope and 
drag is called the parting line.  The pattern must be 
removed from the mold at the parting line without damage to the pattern or mold.  This requires draft of about 1° on 
the pattern tooling, Figure 4.  Draft is required in all split manufacturing methods like casting or forging.  
Sometimes reorientation of the shape in the mold can avoid the need for draft on some surfaces, for example an 
offset parting on an “L” bracket.   
 
Making loose pieces of sand called cores can create 
features that cannot be made in the mold by the pattern, 
Figure 5.  The use of cores in molds allows castings to be 
made hollow or with features that cannot be formed in 
the mold.  Cores add cost in manufacturing, reduce the 
ability of the casting to hold tolerances, but may be 
necessary to form key features that provide the geometry 
designed.  A design may be modified to reduce the 
number of cores by consolidating features, using offset 
parting lines or through changes in component design. 
 
The top half of the mold must be held in position or it will 
float when the liquid steel is poured into the mold and the 
steel will run out at the parting line.  The cores used to form features must also be held in place to locate the feature 
on the casting and to prevent the core from floating before the liquid steel solidifies.  Often the core is made long to 
extend into the mold and the pattern is modified to create a pocket to hold the core.  This pocket is called a core print 
and allows the foundry to remove the spent sand of the core from the casting, locates and holds the core, and allows 
the core feature to be inspected. 
 
The mold has a flow path for the liquid steel to allow it to fill the mold cavity without damage to the mold shape or 
metal quality.  This flow path is called a gating system.  The sprue allows the liquid steel to drop into the lower parts 

Figure 4: Proper drafting of mold

Figure 5: Casting design for core reduction
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of the mold and then gates and runners transfer 
the steel to the mold cavity.  A typical sand mold 
with associated terminology is shown in Figure 6.   
 
When steel solidifies it shrinks.  The mold must 
include risers to make the casting sound.  A 
casting geometry with an isolated heavy section 
such as a flange or boss would have a shrinkage 
cavity in the center.  Risers are placed on heavy 
sections of the casting to overcome the shrinkage 
in the part and hold it in the riser.  It may be 
necessary or desirable to add taper to a section or 
reorient a heavy section to make sure the casting is 
sound, Figure 7.  Castings are evaluated for soundness during design using 
computer simulation much like how finite element analysis is used to 
evaluate structures for service performance.  Optimizing the design and 
rigging for casting the part through directional solidification will decrease 
cost. 
 
After solidification, the casting is removed from the mold and shot blasted 
to remove the sand from the surface and internal cavities.  The gating 
system and risers are cut off.  The casting is heat treated to the properties 
desired.  The casting is inspected to ensure it meets the requirements of the 
purchaser.  Additional information on the casting process can be found in 
Appendix A. 
 
 

MATERIAL 
 
Many believe that cast steel is brittle because the cast iron that is 
commonly used in automotive and household goods, like cookware, 
easily cracks.  However, the properties of steel are very different 
from iron.  Steel castings can meet or exceed the ductility, toughness, 
or weldability of rolled steels.  Technically, all steel is cast.  
Designers generally think of design requirements in terms of strength, 
but the design is commonly constrained by modulus, fatigue, 
toughness or ductility.  Increasing the strength of steel normally 
reduces the ductility, toughness, and weldability.  It is often more 
desirable in steel casting design to use a lower strength grade and 
increase the section size or modify the shape.  The design freedom 
makes castings an attractive way to obtain the best fabrication and 
material performance and the needed component stiffness and 
strength. 
 
Rolled sections of steel have their structure elongated in the direction 
of rolling.  The strength and ductility is improved in that direction but 
they are reduced across the rolling direction, Figure 8.  The lack of a 
rolling direction in steel castings gives them uniform properties in all 
directions.  Rolling steel cold can also strengthen the steel but reduces 
ductility and toughness.  Cast steel grades achieve the same trade off 
by alloying and heat treatment. 
 
Steel castings are used in demanding applications that are safety 
critical, highly specified, and performance demanding.  A railroad 
coupler is a good example of a common application that is critical.  

Figure 6: Sand mold terminology 

Figure 7: Directional solidification

Figure 8: Orientation properties
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Castings are used in high-pressure service in nuclear power plants.  The use of steel castings in pressure containing 
systems is common and specified in the ASME Boiler and Pressure Vessel Code.  
 
One aspect of the ASME code is the requirement that suppliers develop and demonstrate a weld procedure including 
welded properties for the components and materials they supply.  The cast carbon steels that would be used in 
building construction are already well known and established in the Code, including their design requirements and 
welded properties. 
 
 

REQUIREMENTS 
 
The biggest advantage in quality that forged or rolled shapes have over steel castings is their ability to begin with a 
simple optimal casting.  The ingot or bar can be easily inspected prior to rolling or forging.  The use of casting 
processes to make uniquely designed shapes requires inspection that is correlated to the casting process, part design, 
and performance requirements.  Often the purchaser of steel castings uses nondestructive examination, mechanical 
testing, and engineering analysis to ensure the desired reliability. 
 
Steel casting producers routinely test each heat of steel to make sure it meets the mechanical properties required in 
the material specification.  The heat is also analyzed chemically to certify that it meets the standard.  Other 
specialized tests can be required like low temperature impact testing when service performance requirements dictate.  
The dominant material used in building construction is carbon steel because of its reliable properties, low cost and 
ease of fabrication.  One common grade used for building construction in rolled sections is ASTM Specifications 
A36.  The use of steel castings is permitted in building construction using material from either ASTM A27 grade 65-
35 or ASTM A148 grade 80-50 (AISC, 1998).  The properties of carbon steel depend on the composition and heat 
treatment.  Because designers use yield strength as a basic property in design, often material is ordered to higher 
strength without considering the advantage in castings of using a lower strength material with optimum ductility and 
weldability.  Since the load-carrying cross-section can be increased to accommodate lower strengths, the casting can 
be supplied in the highest ductility with strength levels that are compatible with the rolled structural shapes.  This 
use of cast carbon steel in its optimal condition makes sure that the casting will perform safely and reliably and that 
excessive loads will cause failure to occur first in the rolled section familiar to the designer.  The use of ASTM A27 
grade 65-35 in the normalized and tempered condition will give a strong ductile weldable steel.   
 
Traditionally, nondestructive testing has been used to certify casting quality.  Soundness is verified through the use 
of radiographic inspection.  Surface quality is evaluated using magnetic particle inspection.  More recently, the use 
of computer simulation of solidification of the casting integrated with finite element analysis of its performance has 
been used to design optimal casting configurations.  The development of these tools allows the designer to ensure 
that critical areas of the part meet requirements while ensuring the most economical means of manufacturing the 
whole part.  Additional information covering the purchase of steel castings can be found in Appendix A.  Casting 
design tutorials are available on the web at http://www.sfsa.org/tutorials/index.html. 
 
 

CONSTRUCTION 
 
Steel castings have been shown to be 
capable of demanding service in building 
construction.  One example is the 
development of a modular connection by the 
ATLSS program at LeHigh, Figure 9.  A 
self-aligning beam to column connection 
was designed to improve safety and 
productivity in erection.  This self-aligning 
connection used a wedge shaped extension 
on the beam that slid into a wedge shaped 
slot on the column.  The manufacture of the 
complex wedge and slot was accomplished 
with steel castings.  The ATLSS connection Figure 9: ATLSS connector and test 
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was subjected to full-scale mechanical performance tests.  When loaded beyond the design requirement, it finally 
deformed plastically and did not fail catastrophically.  Additional information on the test and the results can be 
found in the reference (Fleischman, 1993). 
 
A gusseted reinforced “L” bracket was 
designed as a carbon steel casting and was 
tested for earthquake retrofitting of damaged 
and undamaged structures in California, Figure 
10.  The connection was designed by ICF 
Kaiser to be installed where welds had failed 
by bolting it to the bottom of the beam column 
connection.  A prototype was cast, tested, and 
approved by the State of California.  The test 
demonstrated that the cast connector would 
survive the maximum load required.  
Additional information on the test and the 
results can be found in the reference (Bleiman). 
 
An example of steel casting advantages for 
high performance complex connections is 
shown in some recent work by Robert 
Fleischman at the University of Arizona for 
designing seismic connectors (Fleischman, 
2002).  Since castings can have non-uniform 
walls and contain complex features, they can 
be designed to locate the strain deformation of 
a loaded structure.  A cast modular node was 
produced that looks nominally like a 
reinforced welded connection.  In reality, the 
casting process allows the intersection of the 
beam and column to be increased and the 
column and panel section tailored to absorb 
the deformation with little transferred load to 
the beam or column.  The welds can be made 
outside of the node.  This Panel Zone part, as-
cast and after test, is shown in Figure 11.  A 
graph of the FEMA cyclic test is shown in 
Figure 12. 
 
A cast modular connector was also developed 
and evaluated using finite element modeling 
and casting solidification simulation to 
provide an effective design.  The casting 
prototype for the cast modular node is shown 
in Figure 13.  A full size test subassembly 
was fabricated and subjected to the Federal 
Emergency Management Agency (FEMA) – 
350 cyclic test protocol.  The cast modular 
node exceeded the requirement greatly as can 
be seen in Figure 14. 
 
Other regions of the world are already using 
cast components to achieve unique structures.  
Dave Eckmann of OWP&P Architects 
provided two examples.  Figure 15 shows a 
cast node for tubular HSS that is welded into a 

Figure 10: ICF Kaiser bolted connection and test

Figure 11: Panel Zone seismic connector and test

Figure 12: Panel Zone FEMA test results 
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structure.  A complex cast base is shown in Figure 16.  Castings for both tubes and 
nodes were used to make the lattice structure that support the Bush Lane House in 
London, Figure 17.  In this case, castings made from a stainless steel provide a 
corrosion resistant structure.  The freedom of manufacturing different sized cast 
components based upon the location of use provided a cost savings compared to 
fabrication.  There have also been a few applications in the United States.  The Crystal 
Cathedral in California used cast nodes for their weldability and mechanical properties. 
 
The AISC/SFSA task committee has started to compile potential applications for castings 
in building construction.  Identified applications include: HSS to W shape connectors, HSS 
nodes, W shape nodes, steel frame to concrete core connectors, plane or space truss 
connectors, column bases, seismic details, bridge splices, roof davits, details for 
blast/impact resistant structures, turnbuckles, clevises, pin connections, and cable clamps.  
Additional parts and architectural applications will continue to be reviewed. 
 

Figure 13: Cast modular connector Figure 14: Test results for modular connector

Figure 15: Stuttgart Stadium Figure 16: Stuttgart Tower

Figure 17: Bush Lane
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CONCLUSION 

 
Steel casting may provide new opportunities for lower cost, improved performance, and unique designs.  The ability 
to make complex shapes repetitively can allow the design of modular connectors that are reasonable in cost, and 
reduce shop and erection costs.  The ability to tailor geometry, customize steel properties, and integrate castings by 
welding allows improved performance.  The freedom of geometry, size and complexity allows the designers 
flexibility that is unprecedented.  Steel castings offer architectural and structural flexibility that will challenge 
building designers’ imagination. 
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APPENDIX A 
 
 
Overview 
 
When making inquiries or ordering parts, all pertinent information must be stated on both the inquiry and order.  
This information should include all of the following components. 

1. Casting shape – either by drawing or pattern.  Drawings should include dimensional tolerances, indications 
of surfaces to be machined, and datum points for locating.  If only a pattern is provided, then the 
dimensions of the casting are as predicted by the pattern. 

2. Material specification and grade (e.g. ASTM A 27/A 27M – 95 Grade 60-30 Class 1). 
3. Number of parts. 
4. Supplementary requirements (e.g. ASTM A 781/A 781M – 95 S2 Radiographic Examination). 

a. Test methods (e.g. ASTM E 94) 
b. Acceptance criteria (e.g. ASTM E 186 severity level 2, or MSS SP-54-1995). 

5. Any other information that might contribute to the production and use of the part. 
To produce a part by any manufacturing process it is necessary to know the design of the part, the material to be 
used and the testing required.  These three elements are discussed in detail in the following sections. 
 
 
Background 
 
To obtain the highest quality product, the part should be designed to take advantage of the flexibility of the casting 
process.  The foundry must have either the part drawing or pattern equipment and know the number of parts to be 
made.  To take advantage of the casting process, the foundry should also know which surfaces are to be machined 
and where datum points are located.  Reasonable dimensional tolerances must be indicated where a drawing is 
provided.  Tolerances are normally decided by agreement between the foundry and customer.  SFSA Supplement 3 
represents a common staring point for such agreements.  Supplement 3 is not a specification and care should be 
taken to reach agreement on what tolerances are required.  Close cooperation between the customers’ design 
engineers and the foundry’s casting engineers is essential, to optimize the casting design, in terms of cost and 
performance. Additional guidelines for casting design are given in “Steel Castings Handbook” and Supplement 1,3, 
and 4 of the “Steel Castings Handbook”. 
 
 
Minimum Section Thickness 
 
The rigidity of a section often governs the minimum thickness to which a section can be designed.  There are cases 
however when a very thin section will suffice, depending upon strength and rigidity calculations, and when 
castability becomes the governing factor.  In these cases it is necessary that a limit of minimum section thickness be 
adopted in order for the molten steel to completely fill the mold cavity. 
 
Molten steel cools rapidly as it enters a mold.  In a thin section close to the gate, which delivers the hot metal, the 
mold will fill readily.  At a distance from the gate, the metal may be too cold to fill the same thin section.  A 
minimum thickness of 0.25” (6 mm) is suggested for design use when conventional steel casting techniques are 
employed.  Wall thickness of 0.060” (1.5 mm) and sections tapering down to 0.030” (0.76 mm) are common for 
investment castings. 
 
 
Draft 
 
Draft is the amount of taper or the angle, which must be allowed on all vertical faces of a pattern to permit its 
removal from the sand mold without tearing the mold walls.  Draft should be added to the design dimensions but 
metal thickness must be maintained. 
 
Regardless of the type of pattern equipment used, draft must be considered in all casting designs.  Draft can be 
eliminated by the use of cores; however, this adds significant costs.  In cases where the amount of draft may affect 
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the subsequent use of the casting, the drawing should specify whether this draft is to be added to or subtracted from 
the casting dimensions as given. 
 
The necessary amount of draft depends upon the size of the casting, the method of production, and whether molding 
is by hand or machine.  Machine molding will require a minimum amount of draft.  Interior surfaces in green sand 
molding usually require more draft than exterior surfaces.  The amount of draft recommended under normal 
conditions is about 3/16 inch per foot (approximately 1.5 degrees), and this allowance would normally be added to 
design dimensions. 
 
 
Parting Line 
 
Parting parallel to one plane facilitates the production of the pattern as well as the production of the mold.  Patterns 
with straight parting lines, parting lines parallel to a single plane, can be produced more easily and at lower cost than 
patterns with irregular parting lines. 
 
Casting shapes that are symmetrical about one centerline or plane readily suggest the parting line.  Such casting 
design simplifies molding and coring, and should be used wherever possible.  They should always be made as “split 
patterns” which require a minimum of handwork in the mold, improve casting finish, and reduce costs. 
 
 
Cores 
 
A core is a separate unit from the mold and is used to create openings and cavities that cannot be made by the 
pattern alone.  Every attempt should be made by the designer to eliminate or reduce the number of cores needed for 
a particular design to reduce the final cost of the casting.  The minimum diameter of a core that can be successfully 
used in steel castings is dependent upon three factors; the thickness of the metal section surrounding the core, the 
length of the core, and the special precautions and procedures used by the foundry. 
 
The adverse thermal conditions to which the core is subjected increase in severity as the metal thickness surrounding 
the core increases and the core diameter decreases.  These increasing amounts of heat from the heavy section must 
be dissipated through the core.  As the severity of the thermal condition increases, the cleaning of the castings and 
core removal becomes much more difficult and expensive.   
 
The thickness of the metal section surrounding the core and the length of the core affect the bending stresses induced 
in the core by buoyancy forces and therefore the ability of the foundry to obtain the tolerances required.  If the size 
of the core is large enough, rods can often be used to strengthen the core.  Naturally, as the metal thickness and the 
core length increase, the amount of reinforcement required to resist the bending stresses also increases.  Therefore, 
the minimum diameter core must also increase to accommodate the extra reinforcing required. 
 
The cost of removing cores from casting cavities may become prohibitive when the areas to be cleaned are 
inaccessible.  The casting design should provide for openings sufficiently large enough to permit ready access for 
the removal of the core. 
 
 
Internal Soundness/Directional Solidification 
 
Steel castings begin to solidify at the mold wall, forming a continuously thickening envelope as heat is dissipated 
through the mold-metal interface.  The volumetric contraction which occurs within a cross section of a solidifying 
cast member must be compensated by liquid feed metal from an adjoining heavier section, or from a riser which 
serves as a feed metal reservoir and which is placed adjacent to, or on top of, the heavier section. 
 
The lack of sufficient feed metal to compensate for volumetric contraction at the time of solidification is the cause of 
shrinkage cavities.  They are found in sections that, owing to design, must be fed through thinner sections.  The 
thinner sections solidify too quickly to permit liquid feed metal to pass from the riser to the thicker sections. 
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Machining 
 
In the final analysis, the foundry’s casting engineer is responsible for giving the designer a cast product that is 
capable of being transformed by machining to meet the specific requirements intended for the function of the part.  
To accomplish this goal a close relationship must be maintained between the customer’s engineering and purchasing 
staff and the casting producer.  Jointly, and with a cooperative approach, the following points must be considered. 

1. The molding process, its advantages and its limitations. 
2. Machining stock allowance to assure clean up on all machined surfaces. 
3. Design in relation to clamping and fixturing devices to be used during machining. 
4. Selection of material specification and heat treatment. 
5. Quality of parts to be produced. 

 
 
Layout 
 
It is imperative that every casting design when first produced be checked to determine whether all machining 
requirements called for on the drawings may be attained.  This may be best accomplished by having a complete 
layout of the sample casting to make sure that adequate stock allowance for machining exists on all surfaces 
requiring machining.  For many designs of simple configuration that can be measured with a simple rule, a complete 
layout of the casting may not be necessary.  In other cases, where the machining dimensions are more complicated, 
it may be advisable that the casting be checked more completely, calling for target points and the scribing of lines to 
indicate all machined surfaces. 


